

erc

Who were the Denisovans?

Tom Higham (University of Oxford)

University Club, Otago 2020

Homo neanderthalensis

Homo luzonensis

Homo floresiensis

Main or Central Chamber

East Chamber

South Chamber

Denisovan remains

Denisova Cave, Russia

Our genetic legacy

- Some present-day humans derive up to ~5% ancestry from Denisovans, 2% from Neanderthals
- Neanderthal ancestry higher in present-day East Asians (2.3% 2.6%) than in Europeans (1.8% - 2.4%)

Sankararaman et al. 2014; Curr. Biol.

Denisovan contribution to modern human biology

Denisovan adaptive introgression in Tibetans at the EPAS1 gene : → associated with haemoglobin concentration and response to hypoxia at high-altitude

Huerta-Sánchez et al. 2014; Nature

© Bundesarchiv

Baishiya Cave, China

Chen et al., Nature 2019.

(Picture credit: Jean-Jacques Hublin, MPI-EVA, Leipzig)

"The genome in search of a fossil"

Denisova Cave

Collagen peptide mass fingerprinting

Species Identification using Soft-Ionization MALDI-ToF-ToF Mass Spectrometry

Buckley et al. 2009; RCIMS.

2315 bone fragments

Brown et al. 2016. Sci. Reports

Denisova 11 genome data

Position [MB]

Slon et al. 2018; Nature

Denisova 11 is the daughter of a Neanderthal mother and a Denisovan father

Slon et al. 2018; Nature

Previous human remains at Denisova

Current human remains at Denisova

There are now 14 human remains from Denisova, 9 of which were found using ZooMS

Conclusions

- A new group of humans called 'Denisovans' has been discovered in Siberia;
- Modern humans interbred with them and Neanderthals between 50-30,000 years ago.
- Some of the genes we inherited are advantageous, some deleterious;
- Using collagen peptide mass fingerprinting we can identify new human bones from tiny fragments in the archaeological record;
- One of these bones from Denisova Cave turned out to be a the first offspring of two different human groups, indicating that interbreeding might have been common when these groups met.

Acknowledgements

- The PalaeoChron team: Katerina Douka, Marine Frouin, Thibaut Devièse, Jean-Luc Schwenninger, Dan Comeskey, Mike Buckley, Christopher Ramsey, James McCullagh, Rachel Hopkins, Eileen Jacob, Samantha Brown, Cara Kubiak, Natasha Reynolds.
- Dept. of Evolutionary Genetics, Max Planck Leipzig team: Svante Pääbo, Matthias Meyer, Viviane Slon, Mateja Hadjinjak, Petra Korlevic, Kay Prüfer, Janet Kelso.
- Denisova Cave team; Anatoly Derevianko, Michael Shunkov, Maxim Kozlikin.
- Staff of the Oxford Radiocarbon Accelerator Unit
- Bert Roberts and Zenobia Jacobs and their group at the University of Wollongong, Australia
- Bence Voila (University of Toronto)
- Funding: European Research Council, NERC, Keble College, Fell Fund, the Royal Society, Russian Science Foundation, Presidential Innovation Fund Max Planck Society.
 WWW.palaeochrow.org